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Abstract
Mapping inter-cell signaling pathways requires an

integrated view of experimental and informatic pro-
tocols. BioSig provides the foundation of cataloging
inter-cell responses as a function of particular condi-
tioning, treatment, staining, etc. for either invivo or
invitro experiments. This paper outlines the system
architecture, a functional data model for representing
experimental protocols, algorithms for image analysis,
and the required statistical analysis. The architec-
ture provides remote shared operation of an inverted
optical microscope, and couples instrument operation
with images acquisition and annotation. The infor-
mation is stored in an object-oriented database. The
algorithms extract structural information such as mor-
phology and organization, and map it to functional
information such as inter-cellular responses. An ex-
ample of usage of this system is included.

1 Introduction
The challenge of the post-genomic era is functional

genomics, i.e., understanding how the genome is ex-
pressed to produce myriad cell phenotypes. A pheno-
type is the result of selective expression of the genome
in response to the microenvironment. To use genomic
information to understand the biology of complex or-
ganisms, the biological responses and signaling path-
ways in cells need to be studied in context, i.e., within
a proper tissue structure. In turn this information
will then more accurately predict health e�ects such
as those following exposure to ionizing radiation. This
paper focuses on an imaging bioinformatic system
used to map fundamental pathways for cell signaling
in tissue. The signalingmechanism has a profound im-
pact on cell division (mitosis), death (apoptosis), and
organization. It is well-known that protein-protein in-
teractions play an important role in biological pro-
cesses. These interactions are the fundamental prereq-
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uisites for control of cell cycle, DNA replication, tran-
scription, metabolism, and signal transduction. The
ultimate decision of a cell to proliferate, di�erentiate
or die is the response to integrated signals from the ex-
tracellular matrix (ECM), cell surface, growth factors
and hormones. Our current aim is to understand how
ionizing radiation alters tissue homeostasis. This is
achieved by studying the e�ect of low-dose radiation
on cellular microenvironment, inter-cell communica-
tion, and the underlying mechanisms. The dynamics
of events initiated at the cellular level but acting on
the tissue provides the key to manipulating the con-
sequences of radiation exposure. Recent studies have
shown that some of the signaling pathways occur via
the cell adhesion system. Cell adhesion is the mecha-
nism that a cell attaches itself to the ECM. By manip-
ulating the ECM receptors on the cell, one can study
changes in their response, morphologies, and organi-
zation as a function of time. One signi�cant aspect of
such studies is that changes in shape, response, and
organization are statistical and a particular observa-
tion cannot take place on the same sample over time.
It is therefore necessary to conduct large population
studies and correlate distant features (measured from
images) with annotation data.

We have developed a bio-informatics framework of
integrated image acquisition, annotation, and hierar-
chical image abstraction to create a database that
registers localization and intensity information about
multiple targets along with positional references and
morphological features. Statistical and visualization
tools will be integrated to allow hypothesis testing and
data mining. The organization of this paper is as fol-
lows. Section 2 provides a brief overview of the sys-
tem architecture and database interaction. Section 3
outlines various components of the informatic system.
Section 4 provides the detail of the image analysis al-
gorithms. Section 5 outlines the details of a speci�c
experiment. Section 6 concludes the paper.

2 Architecture

We have developed a system, named DeepView, to
operate an inverted optical microscope in a collabora-
tive fashion [8]. DeepView is a \Microscopy Channel"
over the wide area network. A microscopy channel ad-



vertises a listing of available online microscopes, where
users can seamlessly participate in an experiment, ac-
quire expert opinions, collect and process data, and
store this information in their electronic notebook.
The channel is a collaborative problem solving envi-
ronment (CPSE) that allows for both synchronous and
asynchronous collaboration. The current testbed in-
cludes several unique electron and optical microscopes
with applications ranging from material science to cell
biology. We have studied current commercial CORBA
services and concluded that three basic services are
needed to meet the extensibility and functionality con-
straints. These include: Instrument Services (IS),
Exchange Services (ES), and Computational Services
(CS). These services sit on top of CORBA and its
enabling services (naming, trading, security, and noti-
�cation). IS provide a layer of abstraction for control-
ling any type of microscope. ES provide a common
set of utilities for information management and trans-
action. CS provide the analytical capabilities needed
for online microscopy and PSE. The overall architec-
ture of this system is shown in Figure 1. DeepView
provides a at �le mechanism for logging and stor-
ing annotation and image data, which is not adequate
for e�cient access of large scale data in a systematic
way. A new addition to DeepView is the informatic
framework for problem solving that includes an ob-
ject oriented database for storage and retrieval. A
key design decision has been not to provide a direct
CORBA interface to the database at this point. This
is due to the fact the current CORBA interfaces to OO
databases are weak and not well supported by various
vendors. The interface to the database is shown in Fig-
ure 2. It uses a browser to access the web-server and
the database. The database supports some computa-
tional functionalities on metadata, however, all image
analysis operations are performed with the computa-
tion services.
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Figure 1: Interaction between OMG-de�ned Enabling
Services and DeepView Services.

3 Informatics
The informatic system consists of three compo-

nents. These include (1) data model, (2) presenta-

Figure 2: Interaction between user, data base, and
computational services.

tion manager, and (3) query manager. These sub-
systems are decoupled for ease of development, test-
ing, and maintenance. The purpose of the data model
component is to capture required annotation data and
couple them to computed representation of images for
hypothesizing signaling pathways. The model is ob-
ject oriented and allows bidirectional tracking of an-
notation and measured feature data. The presenta-
tion manager provides two distinct features. These
include a mapping between data model and the user
interface. The intent is to avoid hardwiring the user
interface in favor of a more exible interface that can
be constructed at run time regardless of changes in
the underlying data model. The second feature pro-
vides the display functionality of a particular query
in either text or graphics. The query manager maps
high level user queries to the Java objects that imple-
ment the data model. The intent is to simplify and
hide detailed manipulation of the database from the
end users. Each of these components are discussed in
further details.

3.1 Data model

The data model, shown in Figure 3, is object-
oriented and links a particular project to computed
features from a collection of images. This link is bidi-
rectional to allow tracking of information from any end
point. Each project has its own database, which is
linked to studies. A study consist of invivo or invitro
experiments. Invivo experiments consists of animals
(mostly mice in our experiments) that are conditioned
and treated in a speci�c way. For example, treatment
may include any number of antibodies, implants, ra-
diation, or pharmaceuticals at a speci�c dosage and
time. Tissue sections are then prepared from an or-
gan at a speci�c thickness, then stained with primary
and secondary antibodies. An antibody is a tool to
study proteins. These stained samples are then im-
aged and pertinent features are computed. Likewise,
invitro experiments use a similar protocol to prepare
the samples for imaging and quantitative analysis.



Figure 3: Data model for annotation of image data.

3.2 Presentation manager

The presentation manager has two features that in-
cludes browsing and updating, and displaying the re-
sult of a query function. The data model of Figure 3
is represented in XML and the presentation manager
constructs a view into the database using this repre-
sentation for browsing and updating. In this context,
hardwiring of a GUI is bypassed in favor of a more
exible user interface. In general, such a mapping
may create a complex implementation issue. However,
we have simpli�ed the presentation system to allow
browsing and updating one layer at a time. A layer
refers to navigation between an object and other ob-
jects that are linked through association, aggregation,
and inheritance. The presentation manager maintains
its own state and provides the required interaction be-
tween user and the database. Finally, the presenta-
tion manager displays the result of a query function
in either text or graphics. The graphics include dose-
response plots and scatter diagrams of computed fea-
tures as a function of independent variables.

3.3 Query manager

The query manager provides a set of prede�ned op-
erators to assist in hypothesis generation and testing.
These operators aid to draw contrast between com-
puted representation with di�erent annotation data
and perform a variety of statistical measures such as
analysis of variance and principal component analy-
sis. These operators allow signaling pathways to be
deciphered for an eventual model reconstruction. An
example of such a high level operator includes correla-

tion of a particular computed feature (features) with
respect to independent variable (variables). Such a
high level operator correlates \area" feature between
samples that have been treated with 2 Gy-levels of ra-
diation and those that have not been radiated at all.
This query is table driven and no scripting language
is used for its entry. The query manager decodes such
a complex user query to a set of database operations,
computes the results, and returns the results to the
presentation manager for display. The actual compu-
tation may include analysis of variance (for relating
a particular measurement against number of indepen-
dent samples) or PCA (for reducing the dimensionality
of computed feature vector) for the display purposes.

4 Extraction of nuclei
Automatic delineation of cell nuclei is an important

step in mapping functional activities into structural
components in cell biology. The nuclei of interest re-
side in a thin layer that surround a particular type of
capillary in the tissue. The intent is to build the nec-
essary computational tools for large scale population
studies and hypothesis testing. These nuclei may be
clumped together, thus, making quick delineation in-
feasible. An example is shown in Figure 4(a)(b). Pre-
vious e�orts in this area have been focused on thresh-
olding, local geometries, and morphological operators
for known cell size [11, 12]. Others have focused on
an Optimal Cut Path that minimizes a cost function in
the absence of shape, size, or other information [4, 15].

(a) (b)

(c) (d)

Figure 4: An example of cell lines with the result of
global and local operations: (a) original image; (b)
threshold image; (c) boundary objects; and (d) local
troughs.



We propose an approach that utilizes both step-
edge and roof-edge boundaries to partition a clump
of nuclei in a way that is globally consistent. In
this context, images are binarized and boundaries{
corresponding to step edges{are recovered. Next, con-
cave corners are extracted from polygonal approxima-
tion of the initial boundary segments. These corners
provide possible cues to where two adjacent cells may
come together. Furthermore, crease segments [6, 7, 13]
provide additional boundary conditions for the group-
ing process. These crease segments correspond to
trough boundaries between adjacent nuclei. A unique
feature of our system is in hyperquadric representation
of each hypothesis and the use of this representation
for global consistency. The main advantage of such a
parameterized representation{as opposed to polygonal
representation{is better stability in shape description
from partial information. In this fashion, each step-
edge boundary segment belongs to one and only one
cell while each roof-edge boundary segment is shared
by two and only two cells. These initial hypotheses
and their localized inter-relationship provides the ba-
sis for search in the grouping step. This is expressed
in terms of an adequate cost function and minimized
through dynamic programming. The �nal result of
this computational step is then shown to a user for
veri�cation and elimination of false alarms.

In the remainder of this section, we will briey re-
view each step of the representation process and pa-
rameterization of each hypothesis in terms of hyper-
quadric. This will be followed by the details of the
grouping protocol, results on real data, and conclud-
ing remarks.

4.1 Representation

The initial step of the computational process is to
collect su�cient cues from local feature activities so
that a set of hypotheses{not all of them correct{can
be constructed for consistent grouping. These ini-
tial steps include thresholding, detection of concave
points from boundary segments, extraction of crease
segments from images, and hyperquadric representa-
tion of each possible hypothesis.

Binary thresholding extracts the clump patterns
from the original image. The corresponding thresh-
old can be obtained through simple histogram analy-
sis or analysis of contrast histogram. This is a valid
approach for uorescence images because of absence
of any shading artifact. The next step is to partition
the clump silhouettes into segments that correspond to
partial cell boundaries. Often the boundary between
two adjacent nuclei is signaled by a concave point, that
can be detected with corner detector. These corners
are localized from the turning angle between adjacent
line segments that are computed by polygonal approx-
imation of the original contours.

4.1.1 Detection of crease boundaries

In grey images, crease points can be de�ned as local
extremes of the principal curvature along the principal
direction [6, 7, 14, 13]. It is well known that due to
noise, scale, �nite di�erential operators, and thresh-
olds, it is very di�cult to detect complete creases as
shown in Figure 4(d). Images are enhanced through
a variation of nonlinear di�usion to improve localiza-
tion of crease points. The principal curvature and di-
rection are then computed, using the standard forms,
and crease points are linked to form curve segments.

4.1.2 Hyperquadric model

A brief introduction to hyperquadric �tting is in-
cluded. A more detailed description can be found in
[2, 3, 5]. A 2D hyperquadric is a closed curve de�ned
by:

NX
i=1

jAix+ Biy + Cij
i = 1 (1)

Since i > 0, (1) implies that

jAix+ Biy +Cij � 1 8i = 1; 2; :::;N (2)

which corresponds to a pair of parallel line segments
for each i. These line segments de�ne a convex poly-
tope (for large ) within which the hyperquadric is
constrained to lie. This representation is valid across
a broad range of shapes which need not be symmet-
ric. The parameters Ai and Bi determine the slopes
of the bounding lines and, along with Ci, the distance
between them. i determines the \squareness" of the
shape.

The �tting problem is as follows. Assume that m
data points pj = (xj; yj); j = 1; 2; :::;m from n seg-
ments (m =

P
n

i=1
mi) are given. The cost function is

de�ned as:

�2 =

mX
j=1

1

jjrFj(pj)jj2
(1� Fj(pj))

2 + �

NX
i=1

Qi (3)

where Fj(pj) =
P

N

i=1
jAixj + Biyj + Cij

i , r is the
gradient operator, � is the regularization parameter
and Qi is the constraint term [5]. The parameters
Ai; Bi; Ci; i are calculated by minimizing � using the
Levenberg-Marquard nonlinear optimization method
[9] from a suitable initial guess [5]. Several examples
of hyperquadric �tting to an initial set of partial seg-
ments are shown in Figure 5.
4.2 Grouping for nuclei

Let each clump be represented by nb boundary seg-
ments bi; i = 1; :::; nb and nc crease segments ci; i =
1; :::; nc. We need to �nd a smaller segment set �i
for each nuclei. Next, we de�ne a set ~�i such that

�i � ~�i. It is assumed that detecting ~�i is trivial
and ~�i contains all the segments that have certain



(a)

Figure 5: Fitting results for hyperquadrics.

possibilities to be part of the ith nucleus. Comput-
ing �i from ~�i is in fact subject to local, adjacency,
and global constraint. It is under-constrained and the
solution is not unique. Each possible solution is mea-
sured by the \goodness criteria" proposed in section
3.3 and the one with minimum cost determines the
segmentation.
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Figure 6: Neighborhood function

4.2.1 Neighborhood function

A neighborhood function is de�ned over a region for
each bi, as shown in Figure 6. Suppose that p1 and p2
are the end points of bi and r is the line segment con-
necting them with l = jjrjj as the length. The neigh-
borhood function is then de�ned as the combination
of a �xed size bounding box (of size L) that extends
and encloses concave points along the boundary. This
procedure is simple, yet scale sensitive. However, it
can be eliminated through constrained triangulation
at a cost of additional computational overhead.

Thus, any segment bj ; j = 1; :::; nb or cj ; j =
1; :::; nc that resides in the bounding box is included

in ~�i.

4.2.2 Search strategy

The key data structure in our approach is the Assign-
ment Matrix M. Each row of M indicates a possible
cell. For the clump under investigation, we can con-
struct up to nb cells. Thus, M has nb rows. Each
column ofM indicates a boundary or crease segment.
Since each crease is shared by two cells, we assign two
columns for it. Thus, M has nb + 2nc columns. Let

sj = bj; 1 � j � nb

snb+2j�1 = snb+2j = cj; 1 � j � nc

(4)

M is determined by

mij =

�
1 if sj 2 ~�i
0 otherwise

(5)

An example for construction of M for feature seg-
ments of Figure 7 is shown in Figure 8. For example,
assume that

~�1 = fb1; c1; b4; b5g

~�2 = fb2; c1; b5; b6g

~�3 = fb3; b6g

~�4 = fb4; c1; b1g

~�5 = fb5; c1; b2g

~�6 = fb6; b3g

(6)

b2

c1

b6b5b4

b3b1

(a)

Figure 7: An example of boundary and crease seg-
ments

The ith row of M represents all possible segments
that may be part of a nucleus. The jth column of M
indicates all possible nuclei that sj maybelong to. The
main constraint is to enforce sharing a crease segment



cell   2
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cell   6
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0     0     1     0     0     1     0    0
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 b1    b2    b3    b4    b5    b6   c1    c1

Path I
Path II

(a)

Figure 8: Assignment matrix for features of Figure 7

between two di�erent nuclei or not using this segment
at all for any nuclei. For example, path I in �gure 8
indicates that

�1 = fb1g

�2 = fb2; c1; b5g

�3 = fb3; b6g

�4 = fb4g

�5 = fc1g

�6 = �

(7)

�i; i = 1; 2::: are then �tted by hyperquadrics each
of which is evaluated by the criteria proposed in the
next section. Thus, the cell segmentation problem is
equivalent to �nding a best path with minimum cost.
For example, the best path for Figure 7 is Path II as
shown in Figure 8, i.e.,

�1 = fb1; c1; b4g

�2 = fb2; c1; b5g

�3 = fb3; b6g

�4 = �

�5 = �

�6 = �

(8)

The actual search process is based on dynamic pro-
gramming [10, 1], where the local cost function is
de�ned in the next section. The dynamic program-
ming algorithm is essentially a multi-stage optimiza-
tion technique where at each stage, or each iteration,
the size of the path is increased by one set of feature
segments. This process is repeated for each starting

point in the assignment matrix, and the path with
least cost is selected as �nal hypothesis.

4.2.3 Evaluation criteria

Although nuclei may have completely di�erent mor-
phology, we have some general information about their
shapes and properties. This information enables us to
compare di�erent hyperquadrics, get rid of the unde-
sirable ones, and reduce false alarms. The \goodness"
criterion includes four terms: area A, shape S, over-
lap O and error C. Each is evaluated by its represen-
tative function EA; ES ; EO and EC . The local cost
is then given by ET = EA + ES + EO + EC with
the intent of minimizing ET over the entire set of hy-
potheses. The transition cost between two adjacent
hypotheses is simply an exclusive consistency measure.
EA; ES ; EO and EC are computed as follows:

1. EA. A is the area of the hyperquadric. A nucleus
should neither be bigger than (Ab) nor smaller
than (As).

EA =

8><
>:

0; if As � A � Ab

1� e
�

A�Ab

�A if A > Ab

1� e
�

As�A

�A if A < As

(9)

where we choose Ab = L2; As =
1

4
L2.

2. ES . S de�ned as an aspect ratio as measured
by the ratio of minor to major axes as shown in
Figure 9(a). ES is de�ned to favor perfect circles:

ES = 1� e
�

1�S

�S (10)

3. EO. A hyperquadric may not always be enclosed
by the cell clump. An overlap measure is de�ned
as the ratio of area inside the clump to the total
area of the hyperquadric. EO is de�ned to favor
larger values of O as shown in Figure 9(b):

EO = 1� e
�

1�O

�
O (11)

4. EC. The error C is de�ned as C = �
2

m
, where

� is the error in the �t error and m is the total
number of points:

EC = 1� e
�

C

�C (12)

Where �A; �S; �O; �C are weighting factors for each
criterion.

5 Experimental results
To determine whether radiation promotes aber-

rant ECM interactions we examined integrin and E-
cadherin localization in preneoplastic human cells sur-
viving radiation. Integrins are a family of epithelial
receptors for the ECM, while E-cadherin maintains
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Figure 9: Evaluation Criteria. (a) Shape rate;
(b)Overlap rate.

normal cell-cell interactions and architecture. We
used the HMT-3522 (S1) human breast cell line cul-
tured within a reconstituted ECM. These cells are ge-
nomicaly unstable but phenotypically normal in that
they recapitulate normalmammary architecture in the
form of a multicellular, 3-dimensional acinus. These
clusters express integrins in a polarized fashion and de-
velop an organized ECM over the course of 7-10 days
in culture.

We examined the consequences of exposing these
cells to ionizing radiation and a protein modi�er
known as TGF- as shown in Figure 10. Antibodies
to E-cadherin, 1 integrin or 6 integrin were detected
using a green uorescent label while nuclei were coun-
terstained with a red uorescent DNA dye. These
were imaged using confocal uorescence microscopy
and were recorded using a 12-bit CCD camera. Cells
that survived either 2 Gy or TGF- (400 pg/ml) ex-
hibited decreased 1 or 6 integrin localization, respec-
tively. However when cells were exposed to both radia-
tion and TGF- , additional perturbations were noted.
The clusters were disorganized, did not polarize the
integrins at the cell surface and failed to express E-
cadherin, indicative of a lack of structural organiza-
tion. An example of the untreated cells is shown in
Figure 11a, which is stained for 1 integrin (green)
with red nuclei. Comparing this sample to Figure
11b, which is a colony of cells that were irradiated
and treated with TGF- ; shows that the localization
of 1 integrin is perturbed, as is the organization of the
cells.

To test whether these observations represented a
statistically signi�cant event in the general popula-
tion, the organization of the cells were quanti�ed in
the population using the nuclear segmentation algo-
rithm outlined in this section. A database of images
were used and the analysis con�rmed the impact of
radiation and TGF- on organization of a colony over
the data set. A pair of images from untreated and
treated samples, their segmentation, and organization
is shown in Figure ??.

Figure 10: Experimental protocol for invitro treat-
ment of a colony.

(a) (b)

Figure 11: Organization of a colony as a result of
radiation and TGF� treatment: (a) untreated sam-
ple maintains symmetry along the lumen; (b) treated
sample looses its symmetric organization.

Figure 12: Normal growth and organization of a
colony after 7-10 days.



Figure 13: Organization of a colony after treatment
indicates lack of symmetry around the lumen. Nuclei
are segmented, represented with hyperquadrics, and a
measure of symmetry by �tting an ellipse is measured.

6 Conclusion

In the post-genome sequencing era, quantitative
imaging of complex biological materials is a criti-
cal problem. Currently, sequential measurements ob-
tained with di�erent microscopy techniques preclude
detailed analysis of multidimensional responses (e.g.
time and space). Quanti�cation of spatial and tempo-
ral concurrent behavior of multiple markers in large
populations of multicellular aggregates is hampered by
labor intensive methods, a lack of quantitative tools
and the inability to index information. Ideally one
would track the kinetics and quantities of multiple
target proteins, their cellular context and morpholog-
ical features in 3-dimensions using large populations.
There are several thousand antibodies and reagents for
di�erentiating speci�c protein components of cells. Of
these a large number are involved in signaling path-
ways, and many can discriminated between functional
activation of a protein caused by modi�cations such
as phosphorylation status, protein conformation and
complex formation. However, these pathways are cur-
rently not well understood, due to the complexity of
the potential events and lack of information regard-
ing where and when a protein is actively participating
in signaling. Inherent biological variability and ge-
nomic instability are additional factors that support
the requirement for large population analysis. BioSig
informatics approach to microscopy and image analy-
sis can be used to build a more detailed picture of the
signaling that occurs between cells, as a result of an
exogenous stimulus such as radiation, or as a conse-
quence of endogenous programs leading to biological
functions.
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